

PAQ-1603010502020500 Seat No. ____

M. Sc. (Sem. II) (W.E.F. 2016) Examination

August / September - 2020

Physics: CT-05

(Quantum Mechanics-II & Statistical Mechanics) (New Course)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions carry equal marks.

- (2) Full marks are indicated at the right end of each question.
- (3) Symbols have their usual meanings.
- 1 Answer any seven of the following:

14

- (a) Write the formula for Yakawa potential. Which parameter is considered as a measure of the radius of the atom ?
- (b) Compare main features of Born approximation and partial waves.
- (c) In the partial wave analysis, the following radial wave equation is obtained:

$$\frac{d^2V_{\ell}}{dr^2} \pm 2 ik \frac{dV_{\ell}}{dr} - \left[U + \frac{\ell(\ell+1)}{r^2}\right] v_{\ell} = 0$$

Prove that this equation is converted into the following form by considering

$$\frac{d^2V_{\ell}}{dr^2} \ll \frac{dv_{\ell}}{dr}, U \propto \frac{1}{r}, U \gg \frac{\ell(\ell+1)}{r^2} \quad \log v_{\ell} = \mp \frac{i}{2k} \int_{r}^{r} \frac{dr}{r}$$

- (d) How from the sign of phase shift δ_{ℓ} , one can predict the nature of the potential ? Explain in brief.
- (e) What is the energy surface of energy E defined by $\Im d(p,q) = E$ in \wp -space ?

- (f) What is partition function? Write its formula. What is β and h in this formulation.
- (g) In the grand canonical ensemble, if $\mu = a(v) v \frac{\partial a(v)}{\partial v}, P = -\frac{\partial a(v)}{\partial v} \text{ then prove that } -\frac{\partial P}{\partial v} = 1$

$$\frac{\partial P}{\partial \mu} = \frac{1}{v}$$
, here $v = \frac{V}{N}$.

- (h) Write postulates of Quantum Statistics.
- (i) What is superfluid? Explain in brief crawling of liquid helium.
- (j) In Ising model, the following equation is derived,

$$E_{I}\left\{S_{i}\right\} = - \in \sum_{\left\langle ij\right\rangle} S_{i}S_{j} - H\sum_{i=1}^{N} S_{i}$$

What the quantities E_I , \in and H indicate? How \in indicates ferromagnetism or antiferromagnetism?

- 2 Answer any two of the following:
 - (a) In the scattering theory, by adopting the wave mechanical approach obtain the following result,

$$\frac{d\sigma(\theta,\phi)}{d\Omega} = \left| f(\theta,\phi) \right|^2$$

(b) Define Born approximation and obtain that

$$F_B(\theta) = K^{-1} \int_0^\infty r \sin kr \, U(r) dr$$

(c) In the validity of Born approximation use the

following formula,
$$\frac{m}{\hbar^2 k} \left| \int_{0}^{\infty} (e^{2ikr} - 1)V(r)dr \right| << 1$$
 to apply in

the case of square well potential of depth V_0 and range a and derive the following result -

$$\frac{mV_0}{2\hbar^2 k^2} \left(\rho^2 - 2\rho \sin \rho - 2\rho 2\cos \rho + 2\right)^{1/2} << 1. \text{ Where, } \rho = 2Ka,$$

further show that for $\rho\!<\!\!<\!1,$ this expression is

$$\approx \frac{mV_0}{2\hbar^2 k^2} \left(\frac{1}{2}\rho^2\right).$$

7

7

3 (a) For the partial wave analysis show that the $f(\theta)$ is 7 a sum of contributions from partial waves from $\ell=0$ to ∞ , and derive the relation :

$$f(\theta) = K^{-1} \sum_{\ell=0}^{\infty} (2\ell + 1) e^{i\delta \ell} \sin \delta_{\ell} P_{\ell} (\cos \theta)$$

(b) In the partial wave analysis derive the following expression for Born approximation for phase shift,

$$\sin \delta_{\ell} = -K \int_{0}^{\infty} U(r) r^{2} j_{\ell}^{2}(kr) dr.$$

OR

3 (a) For classical ideal gas, obtain the following expression:

$$E = \left(\frac{3}{4\pi} \frac{h^2}{m}\right) \frac{N}{V^{2/3}} \exp\left(\frac{2}{3} \frac{S}{NK} - 1\right)$$

(b) The energy fluctuations in the canonical ensemble 7 show that the canonical ensemble is Mathematically equivalent to micro-canonical ensemble. Do this by adoping the average energy approach and show that -

$$\langle H^2 \rangle - \langle H \rangle^2 = KT^2 C_r$$
.

What happens if $N \rightarrow \infty$?

- 4 Answer any two of the following:
 - (a) In the grand canonical ensemble derive the following relation,

$$\rho(p,q,N) = \frac{z^N e^{-\beta VP - \beta g(p,q)}}{N! h^{3N}}$$

(b) Explain micro-canonical ensemble in quantum statistics.

7

(c) In the Ising model considering the nearest pair
interaction such as (+, +)(+, -), (-, -) with their numbers
as N₊₊, N₊₋, N₋₋ respectively. Draw the diagram showing interactions and derive the following interaction energy,

$$E_I(N_+, N_{++}) = -4 \in N_{++} - \left(-\frac{1}{2}r \in -H\right)N + 2(\in r - H)N_+.$$

5 Write any two notes:

- (a) Born series. 7
- (b) Gibbs paradox. 7
- (c) λ transition. 7
- (d) Eikonel approximation. 7